Skip to main content

Influence of KMnO4 Concentration on Infrared Emissivity of Coatings

On TC4 Alloys by Micro-Arc Oxidation (Materials EISSN 1996-1944)

Abstract:

Figure 8. Infrared emissivity curves of the MAO ceramic coatings with different KMnO4 concentrations within a waveband of 5–20 μm.

Figure 8. Infrared emissivity curves of the MAO ceramic coatings with different KMnO4 concentrations within a waveband of 5–20 μm.

Ceramic coatings with high emissivity were fabricated on TC4 alloys by micro-arc oxidation technique (MAO) in mixed silicate and phosphate electrolytes with varying KMnO4 addition.

The microstructure, phase and chemical composition were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), and the infrared emissivity of the MAO coatings was measured in a waveband of 5–20 μm.

The results show that the thickness of the coatings increased with the addition of KMnO4, but the roughness of the coatings first decreased and then increased slightly due to the inhibitory effect of KMnO4 on Na2SiO3 deposition. Read More

Retrievals of the Far Infrared surface emissivity over the Greenland Plateau

Research Article

olalertbanner

TITLE: “Retrievals of the Far Infrared surface emissivity over the Greenland Plateau using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS).”

(See Author List below)

ABSTRACT (Format Edited for easier online viewing)

The Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) measured near surface upwelling and downwelling radiances within the far infrared (FIR) over Greenland during two flights in March 2015. Here we exploit observations from one of these flights to provide in-situ estimates of FIR surface emissivity, encompassing the range 80-535 cm-1.Read More

Improving Temperature Measurement of Low Emissivity Targets

Helpful Tips for Users From FLIR

fliratspr118-imageMeer, Belgium — FLIR Systems has published a new technical note that investigates and describes how to use low-cost materials to increase target emissivity to enable accurate measurement using a thermal imaging camera.

Clean, unoxidized, bare metal surfaces such as are found in many R&D applications have low emissivity. Consequently they are difficult to analyse with a thermal imaging camera.

To get good accurate temperature measurements there is a consequent need to increase the emissivity of these problematic targets.

The technical note provides an informative introduction to emissivity and how a target’s emissivity, reflectance and thermal conductivity values are highly dependent on material properties.Read More